Системы возбуждения синхронных машин. Устройство синхронной машины Где располагается обмотка возбуждения в синхронной машине

  • 11.Характеристики генератора независимого возбуждения.
  • 12.Самовозбуждение генератора параллельного возбуждения.
  • 13.Характеристики генератора смешанного возбуждения.
  • 14.Потери и кпд двигателя постоянного тока.
  • 16.Характеристики двигателя последовательного возбуждения.
  • 15.Характеристики двигателя параллельного возбуждения.
  • 17.Характеристики двигателя смешанного возбуждения.
  • 18.Регулирование частоты вращения двигателей постоянного тока.
  • 19.Пуск двигателей постоянного тока: прямое включение, от вспомогательного преобразователя и с помощью пускового реостата.
  • 20.Торможение двигателей постоянного тока.
  • Синхронные машины переменного тока.
  • 22.Образование вращающегося магнитного поля при двухфазной и трёхфазной системе.
  • 23.Мдс обмоток синхронных машин переменного тока.
  • 24.Принципы выполнения и схемы обмоток машин переменного тока.
  • 25.Назначение синхронного генератора и двигателя.
  • 1. Электродвигатели постоянного тока, с якорем на постоянных магнитах;
  • 26.Способы возбуждения синхронных машин.
  • 27.Преимущества и недостатки синхронного двигателя.
  • 2. Асинхронный пуск двигателя.
  • 28. Реакция якоря синхронного генератора при активной, индуктивной, ёмкостной и смешанной нагрузках.
  • 29.Магнитные потоки и эдс синхронного генератора.
  • 1. Намагничивающая сила обмотки возбуждения f/ создает магнитный поток возбуждения Фу, который индуктирует в обмотке статора основную эдс генератора е0.
  • 30.Холостой ход синхронного генератора.
  • 31.Параллельная работа синхронного генератора с сетью.
  • 1. Точная;
  • 2. Грубая;
  • 3. Самосинхронизация.
  • 32.Электромагнитная мощность синхронной машины.
  • 33.Регулирование активной и реактивной мощностей синхронного генератора.
  • 34.Внезапное короткое замыкание синхронного генератора.
  • 1. Механические и термические повреждения электрооборудования.
  • 2. Асинхронный пуск двигателя.
  • 1. Пуск с помощью вспомогательного двигателя.
  • 2. Асинхронный пуск двигателя.
  • 1. Пуск с помощью вспомогательного двигателя.
  • 2. Асинхронный пуск двигателя.
  • 1. Намагничивающая сила обмотки возбуждения f/ создает магнитный поток возбуждения Фу, который индуктирует в обмотке статора основную эдс двигателя е0.
  • Асинхронные машины переменного тока.
  • 37.Конструкция асинхронного двигателя.
  • 2.8/1.8 А – отношение максимального тока к номинальному
  • 1360 R/min – номинальная частота вращения, об/мин
  • Ip54 – степень защиты.
  • 38.Работа асинхронной машины при вращающемся роторе.
  • 2О если под действием спускаемого груза раскрутить ротор до скорости больше синхронной, то машина перейдет в генераторный режим
  • 3Ежим противовключения, рис. 106.
  • 39.Асинхронная машина с неподвижным ротором.
  • 40.Переход от реального асинхронного двигателя к схеме замещения.
  • 41.Анализ т-образной схемы замещения асинхронного двигателя.
  • 42.Анализ г-образной схемы замещения асинхронного двигателя.
  • 43.Потери асинхронного двигателя и кпд асинхронного двигателя.
  • 44.Векторная диаграмма асинхронного двигателя.
  • 47.Электромагнитная мощность и момент асинхронного двигателя.
  • 48.Механическая характеристика при изменениях напряжения и сопротивления ротора.
  • 1. При изменении подводимого к двигателю напряжения изменяется момент, т. К. Он пропорционален квадрату напряжения.
  • 49.Паразитные моменты асинхронного двигателя.
  • 50.Рабочие характеристики асинхронного двигателя.
  • 51.Экспериментальное получение рабочих характеристик асинхронного двигателя.
  • 52.Аналитический метод расчёта рабочих характеристик асинхронного двигателя.
  • 53.Расчётно-графический метод определения рабочих характеристик асинхронного двигателя.
  • 54.Пуск трёхфазного асинхронного двигателя.
  • 1Вигатели с двойной «беличьей» клеткой.
  • 2Лубокопазные двигатели.
  • 55.Регулирование частоты вращения асинхронного двигателя: изменением p, f, s.
  • 1.Частотное регулирование.
  • 2. Изменение числа пар полюсов.
  • 3. Изменение питающего напряжения
  • 4.Изменение активного сопротивления цепи ротора.
  • 57.Однофазные асинхронные двигатели.
  • 56.Работа асинхронного двигателя при некачественной электроэнергии.
  • 58.Использование трёхфазного асинхронного двигателя в режиме однофазного.
  • Трансформаторы.
  • 60.Режим холостого хода трансформатора и принцип его работы.
  • 61.Работа трансформатора под нагрузкой.
  • 62.Приведение чисел витков обмоток и векторная диаграмма трансформатора.
  • 63.Схема замещения трансформатора.
  • 2.28. Схема замещения трансформатора.
  • 64.Определение параметров схемы замещения трансформатора.
  • 65.Опыт холостого хода трансформатора.
  • 66.Опыт короткого замыкания трансформатора.
  • 67.Потери и кпд трансформатора, энергетическая диаграмма.
  • 68.Изменение вторичного напряжения трансформатора от степени и характера его загрузки.
  • 69.Регулирование вторичного напряжения трансформатора.
  • 1) Стабилизация вторичного напряжения при незначительном (на 5 - 10%) изменении первичного напряжения, что происходит обычно из-за падения напряжения в линии;
  • 2) Регулирование вторичного напряжения (из-за особенностей технологического процесса) в широких пределах при неизменном (или мало изменяющемся) первичном напряжении.
  • Обозначения начал и концов обмоток трансформатора
  • 71.Группы соединений обмоток.
  • 72. Параллельная работа трансформаторов.
  • 3. Мощности параллельно работающих трансформаторов не должны значительно отличаться одна от другой. Допускается различие мощностей не больше чем в 3 раза.
  • 5. Обмотки фаз трансформаторов, включенных для параллельной работы, должны совпадать, т. Е. Одинаково обозначенные выводы обмоток фаз должны быть присоединены к одной, а не к разным шинам.
  • 73.Работа трёхфазных трансформаторов со схемами обмоток y/Yн, д/Yн,y/Zн при несимметричной нагрузке.
  • 74.Специальные трансформаторы.
  • 75.Переходной процесс при коротком замыкании трансформатора.
  • По способу возбуждения синхронные машины подразделяются на два типа:

    Возбуждение независимого вида.

    Самовозбуждения.

    При независимом возбуждении схема подразумевает наличие подвозбудителя, который питает: обмотку главного возбудителя, реостат для регулировки, устройства управления, регуляторы напряжения и т. д. Кроме этого способа, возбуждение может осуществляться от генератора, выполняющего вспомогательную функцию, он приводится в работу от двигателя синхронного или асинхронного типа.

    Для самовозбуждения , питание обмотки происходит через выпрямитель, работающий на полупроводниках или ионного типа.

    Для турбо- и гидрогенераторов используют тиристорные устройства возбуждения. Ток возбуждения регулируется в автоматическом режиме, при помощи регулятора возбуждения, для машин малой мощности характерно использование регулировочных реостатов, они включены в цепь обмотки возбуждения.

    27.Преимущества и недостатки синхронного двигателя.

    Синхронный двигатель имеет ряд преимуществ перед асинхронным:

    1. Высокий коэффициент мощности cosФ=0,9.

    2. Возможность использования синхронных двигателей на предприятиях для увеличения общего коэффициента мощности.

    3. Высокий КПД он больше чем у асинхронного двигателя на (0,5-3%) это дастигается за счёт уменьшения потерь в меди и большого CosФ.

    4. Обладает большой прочностью обусловленной увеличенным воздушным зазором.

    5ращающий момент синхронного двигателя прямо пропорционален напряжению в первой степени. Т.е синхронный двигатель будет менее чувствителен к изменению величины напряжения сети.

      Недостатки синхронного двигателя:

    1. Сложность пусковой аппаратуры и большую стоимость.

    2. Синхронные двигатели применяют для приведения в движение машин и механизмов, не нуждающихся в изменении частоты вращения, а так же для механизмов у которых с изменением нагрузки частота вращения остаётся постоянной: (насосы, компрессоры, вентиляторы.)

    Пуск синхронного двигателя.

    В виду отсутствия пускового момента в синхронном двигателе для пуска его используют следующие способы:

    2. Асинхронный пуск двигателя.

    1. Пуск с помощью вспомогательного двигателя.

    Пуск в ход синхронного двигателя с помощью вспомогательного двигателя может быть произведен только без механической нагрузки на его валу, т.е. практически вхолостую. В этом случае на период пуска двигатель временно превращается в синхронный генератор, ротор которого приводится во вращение небольшим вспомогательным двигателем. Статор этого генератора включается параллельно в сеть с соблюдением всех необходимых условий этого соединения. После включения статора в сеть вспомогательный приводной двигатель механически отключается. Этот способ пуска сложен и имеет к тому же вспомогательный двигатель.

    2. Асинхронный пуск двигателя.

    Наиболее распространенным способом пуска синхронных двигателей является асинхронный пуск, при котором синхронный двигатель на время пуска превращается в асинхронный. Для возможности образования асинхронного пускового момента в пазах полюсных наконечников явнополюсного двигателя помещается пусковая короткозамкнутая обмотка. Эта обмотка состоит из латунных стержней, вставленных в пазы наконечников и соединяемых накоротко с обоих торцов медными кольцами.

    При пуске в ход двигателя обмотка статора включается в сеть переменного тока. Обмотка возбуждения (3) на период пуска замыкается на некоторое сопротивление Rг, рис. 45, ключ К находится в положении 2, сопротивление Rг = (8-10)Rв. В начальный момент пуска при S=1, из-за большого числа витков обмотки возбуждения, вращающее магнитное поле статора наведет в обмотке возбуждения ЭДС Ев, которая может достигнуть весьма большого значения и если при пуске не включить обмотку возбуждения на сопротивление Rг произойдет пробой изоляции.

    Рис. 45 Рис. 46.

    Процесс пуска синхронного двигателя осуществляется в два этапа. При включении обмотки статора (1) в сеть в двигателе образуется вращающее поле, которое наведет в короткозамкнутой обмотке ротора (2) ЭДС. Под действием, которой будет протекать в стержнях ток. В результате взаимодействия вращающего магнитного поля с током в коротко замкнутой обмотке создается вращающий момент, как у асинхронного двигателя. За счет этого момента ротор разгоняется до скольжения близкого к нулю (S=0,05), рис. 46. На этом заканчивается первый этап.

    Чтобы ротор двигателя втянулся в синхронизм, необходимо создать в нем магнитное поле включением в обмотку возбуждения (3) постоянного тока (переключив ключ К в положение 1). Так как ротор разогнан до скорости близкой

    к синхронной, то относительная скорость поля статора и ротора небольшая. Полюса плавно будут находить друг на друга. И после ряда проскальзываний противоположные полюса притянутся, и ротор втянется в синхронизм. После чего ротор будет вращаться с синхронной скоростью, и частота вращения его будет постоянной, рис. 46. На этом заканчивается второй этап пуска.

  • – это электрические машины переменного тока, в которых ротор и магнитное поле токов статора вращаются синхронно.

    Трехфазные синхронные генераторы – самые мощные электрические машины. Единичная мощность - синхронных генераторов на ГЭС - 640 МВт, а на ТЭС – 8 - 1200 МВт.

    У синхронной машины одна из обмоток присоединена к электрической сети переменного тока, а вторая - возбуждается постоянным током. Обмотку переменного тока называют якорной.

    Обмотка якоря преобразует всю электромагнитную мощность синхронной машины в электрическую и наоборот. Поэтому ее обычно располагают на статоре, который называют якорем. Обмотка возбуждения потребляет 0,3 - 2% от преобразуемой мощности, поэтому ее располагают обычно на вращающемся роторе, который называют индуктором и малую мощность возбуждения подводят через контактные кольца или устройства бесконтактного возбуждения.

    Магнитное поле якоря вращается с синхронной скоростью n1 = 60f1/p, об/мин,

    где p =1,2,3 ... 64 и т.д. - число пар полюсов.

    При частоте промышленной сети f1 = 50 гц, ряд синхронных скоростей при различных числах полюсов: 3000, 1500, 1000 и т.д.). Так как магнитное поле индуктора неподвижно относительно ротора, то для непрерывного взаимодействия полей индуктора и якоря ротор должен вращаться с той же синхронной скоростью.

    Конструкция синхронных машин

    Статор синхронной машины с трехфазной обмоткой не отличается от конструкции , а ротор с обмоткой возбуждения бывает двух видов - явнополюсный и неявнополюсный. При больших скоростях и малом числе полюсов применяют неявнополюсные роторы, как имеющие более прочную конструкцию, а при малых скоростях и большом числе полюсов применяют явнополюсные роторы сборной конструкции. Прочность таких роторов меньше, но они проще в изготовлении и в ремонте.

    Явнополюсный ротор:

    Применяются в синхронных машинах с большим числом полюсов и соответственно относительно низкой n. ГЭС (гидрогенераторы). частота n от 60 до нескольких сотен об/мин. Самые мощные гидрогенераторы имеют диаметр ротора - 12 м при длине – 2,5 м, p – 42 и n= 143 об/мин.

    Обмотка - в пазах ротора диаметр d = 1,2 – 1,3 м, активная длина ротора не более 6,5 м. ТЭС, АЭС (турбогенераторы). S=500 000 кВА в одной машине n=3000 или 1500 об/мин (1 или 2 пары полюсов).

    Кроме обмотки возбуждения на роторе располагают демпферную или успокоительную обмотку, которую в синхронных двигателях используют для запуска. Эту обмотку выполняют аналогично короткозамкнутой обмотке типа "беличья клетка", только значительно меньшего сечения, так как основной объем ротора занимает обмотка возбуждения. В неявнополюсных роторах роль демпферной обмотки выполняют поверхности сплошных зубцов ротора и токопроводящие клинья в пазах.

    Постоянный ток в обмотку возбуждения синхронной машины может подаваться от специального генератора постоянного тока, установленного на валу машины и называемого возбудителем, или от сети через полупроводниковый выпрямитель.

    Смотрите также по этой теме:

    Синхронная машина может работать генератором или двигателем. Синхронная машина может работать в качестве двигателя, если подвести к обмотке ее статора трехфазный ток из сети. В этом случае в результате взаимодействия магнитных полей статора и ротора поле статора увлекает за собой ротор. При этом ротор вращается в ту же сторону и с такой же скоростью, как и поле статора.

    Наибольшее распространение получил генераторный режим работы синхронных машин, и почти вся электроэнергия вырабатывается синхронными генераторами. Синхронные двигатели применяются при мощности более 600 кВт и до 1 кВт как микродвигатели. Синхронные генераторы на напряжение до 1000 В применяются в агрегатах для автономных систем электроснабжения.

    Агрегаты с этими генераторами могут быть стационарными и передвижными. Большинство агрегатов применяются с дизельными двигателями, но приводом их могут быть газовые турбины, электродвигатели и бензиновые двигатели.

    Синхронный двигатель отличается от синхронного генератора лишь пусковой успокоительной обмоткой, которая должна обеспечивать хорошие пусковые свойства двигателя.

    Схема шестиполюсного синхронного генератора. Показаны сечения обмоток одной фазы (три обмотки, соединенные последовательно). В показанные на рисунке свободные пазы укладываются обмотки двух других фаз. Фазы соединяются в звезду или треугольник.

    Режим генератора: двигатель (турбина) вращает ротор, на обмотку которого подается постоянное напряжение? возникает ток, который создает постоянное магнитное поле. Магнитное поле вращается вместе с ротором, пересекает статорные обмотки и наводит в них одинаковые по модулю и частоте ЭДС, но сдвинутые на 1200 (симметричная трехфазная система).

    Режим двигателя: обмотку статора подключают к трёхфазной сети, а обмотку ротора к источнику постоянного тока. В результате взаимодействия вращающегося магнитного поля машины с постоянным током обмотки возбуждения, возникает вращающий момент Мвр, который приводит ротор во вращение со скоростью магнитного поля.

    Механическая характеристика синхронного двигателя – зависимость n(M)– представляет собой горизонтальный отрезок прямой.

    Массовое использование асинхронных двигателей с существенными недогрузками осложняет работу энергетических систем и станций: снижается коэффициент мощности в системе, что приводит к дополнительным потерям во всех аппаратах и линиях, а также и к их недоиспользованию по активной мощности. Поэтому возникла необходимость в применении синхронных двигателей, особенно для механизмов с приводами большой мощности.

    Синхронные двигатели имеют по сравнению с асинхронными большое преимущество, заключающееся в том, что благодаря возбуждению постоянным током они могут работать с cosфи = 1 и не потребляют при этом реактивной мощности из сети, а при работе, с перевозбуждением даже отдают реактивную мощность в сеть. В результате улучшается коэффициент мощности сети и уменьшаются падение напряжения и потери в ней, а также повышается коэффициент мощности генераторов, работающих на электростанциях.

    Максимальный момент синхронного двигателя пропорционален U, а у асинхронного двигателя U 2 .

    Поэтому при понижении напряжения синхронный двигатель сохраняет большую нагрузочную способность. Кроме того, использование возможности увеличения тока возбуждения синхронных двигателей позволяет увеличивать их надежность работы при аварийных понижениях напряжения в сети и улучшать в этих случаях условия работы энергосистемы в целом. Вследствие большей величины воздушного зазора добавочные потери в стали и в клетке ротора синхронных двигателей меньше, чем у асинхронных, благодаря чему к. п. д. синхронных двигателей обычно выше.

    С другой стороны, конструкция синхронных двигателей сложнее, чем короткозамкнутых асинхронных двигателей, и, кроме того, синхронные двигатели должны иметь возбудитель или иное устройство для питания обмотки возбуждения постоянным током. Вследствие этого синхронные двигатели в большинстве случаев дороже асинхронных двигателей с короткозамкнутым ротором.

    При эксплуатации синхронных двигателей возникли существенные трудности с их пуском. В настоящее время эти трудности преодолены.

    Пуск и регулирование скорости вращения синхронных двигателей также сложнее. Тем не менее, преимущество синхронных двигателей настолько велико, что при больших мощностях их целесообразно применять всюду, где не требуется частых пусков и остановок и регулирования скорости вращения (двигатель-генераторы, мощные насосы, вентиляторы, компрессоры, мельницы, дробилки и пр.).

    Синхронными машинами называют устройства частота вращения ротора, в которых она всегда равна или же кратна аналогичному показателю магнитного поля внутри воздушного зазора, которое создается за счет тока проходящего по якорной обмотке. В основе работы данного типа машин лежит принцип электромагнитной индукции.

    Возбуждение синхронных машин

    Возбуждение синхронных машин может производиться за счет электромагнитного воздействия или же постоянного магнита. В случае с электромагнитным возбуждением применяется специальный генератор постоянного тока, который и питает обмотку, в связи со своей основной функцией данное устройство получило название возбудитель. Стоит отметить, что система возбуждения также делится на два вида по способу воздействия – прямой и косвенный. Прямой метод возбуждения подразумевает, что вал синхронной машины напрямую соединен механическим способом с ротором возбудителя. Косвенный же метод предполагает, что для того чтобы заставить ротор вращаться используется другой двигатель, например асинхронная электромашина.

    Наибольшее распространение сегодня получил именно прямой метод возбуждения. Однако в тех случаях, когда предполагается работа системы возбуждения с мощными синхронными электромашинами применяют генераторы независимого возбуждения, на обмотку которых ток подается с другого источника постоянного тока, называемого подвозбудителем. Несмотря на всю громоздкость, данная система позволяет добиться большей стабильности в работе, а также более тонкой настройки характеристик.

    Устройство синхронной машины

    У синхронной электрической машины существует две основных составляющих части: индуктор (ротор) и якорь (статор). Самой оптимальной и потому распространенной на сегодняшний день является схема, когда якорь располагают на статоре, в то время как индуктор располагается на роторе. Обязательным условием для функционирования механизма является наличие между этими двумя частями воздушной прослойки. Якорь в данном случае представляет собой неподвижную часть устройства (статор). Он может состоять как из одной, так и из нескольких обмоток, в зависимости от необходимой мощности магнитного поля, которое он должен создавать. Сердечник статора, как правило, набирается из отдельных тонких листов электротехнической стали.


    Индуктор в синхронных электрических машинах представляет собой электромагнит, при этом концы его обмотки выводятся непосредственно на контактные кольца на валу. Во время работы индуктор возбуждается постоянным током, благодаря которому ротор и создает электромагнитное поле, взаимодействующее с магнитным полем якоря. Таким образом, благодаря постоянному току, возбуждающему индуктор, достигается постоянная частота вращения магнитного поля внутри синхронной машины.

    Принцип действия синхронных машин

    В основе принципа работы синхронной машины лежит взаимодействие двух типов магнитных полей. Одно из этих полей образуется якорем, другое же возникает вокруг возбуждаемого постоянным током электромагнита – индуктора. Непосредственно после выхода на рабочую мощность магнитное поле создаваемое статором и вращающееся внутри воздушной прослойки, сцепляется с магнитными полями на полюсах индуктора. Таким образом, для того чтобы синхронная машина достигла рабочей частоты вращения, требуется определенное время на ее разгон. После того как машина разгоняется до необходимой частоты, на индуктор подается питание от источника постоянного тока.

    Синхронными машинами называют устройства частота вращения ротора, в которых она всегда равна или же кратна аналогичному показателю магнитного поля внутри воздушного зазора, которое создается за счет тока проходящего по якорной обмотке. В основе работы данного типа машин лежит принцип электромагнитной индукции.

    Возбуждение синхронных машин

    Возбуждение синхронных машин может производиться за счет электромагнитного воздействия или же постоянного магнита. В случае с электромагнитным возбуждением применяется специальный генератор постоянного тока, который и питает обмотку, в связи со своей основной функцией данное устройство получило название возбудитель. Стоит отметить, что система возбуждения также делится на два вида по способу воздействия – прямой и косвенный. Прямой метод возбуждения подразумевает, что вал синхронной машины напрямую соединен механическим способом с ротором возбудителя. Косвенный же метод предполагает, что для того чтобы заставить ротор вращаться используется другой двигатель, например асинхронная электромашина.

    Наибольшее распространение сегодня получил именно прямой метод возбуждения. Однако в тех случаях, когда предполагается работа системы возбуждения с мощными синхронными электромашинами применяют генераторы независимого возбуждения, на обмотку которых ток подается с другого источника постоянного тока, называемого подвозбудителем. Несмотря на всю громоздкость, данная система позволяет добиться большей стабильности в работе, а также более тонкой настройки характеристик.

    Устройство синхронной машины

    У синхронной электрической машины существует две основных составляющих части: индуктор (ротор) и якорь (статор). Самой оптимальной и потому распространенной на сегодняшний день является схема, когда якорь располагают на статоре, в то время как индуктор располагается на роторе. Обязательным условием для функционирования механизма является наличие между этими двумя частями воздушной прослойки. Якорь в данном случае представляет собой неподвижную часть устройства (статор). Он может состоять как из одной, так и из нескольких обмоток, в зависимости от необходимой мощности магнитного поля, которое он должен создавать. Сердечник статора, как правило, набирается из отдельных тонких листов электротехнической стали.


    Индуктор в синхронных электрических машинах представляет собой электромагнит, при этом концы его обмотки выводятся непосредственно на контактные кольца на валу. Во время работы индуктор возбуждается постоянным током, благодаря которому ротор и создает электромагнитное поле, взаимодействующее с магнитным полем якоря. Таким образом, благодаря постоянному току, возбуждающему индуктор, достигается постоянная частота вращения магнитного поля внутри синхронной машины.

    Принцип действия синхронных машин

    В основе принципа работы синхронной машины лежит взаимодействие двух типов магнитных полей. Одно из этих полей образуется якорем, другое же возникает вокруг возбуждаемого постоянным током электромагнита – индуктора. Непосредственно после выхода на рабочую мощность магнитное поле создаваемое статором и вращающееся внутри воздушной прослойки, сцепляется с магнитными полями на полюсах индуктора. Таким образом, для того чтобы синхронная машина достигла рабочей частоты вращения, требуется определенное время на ее разгон. После того как машина разгоняется до необходимой частоты, на индуктор подается питание от источника постоянного тока.

    Программы