Дифференцирующая цепь RC. Дифференцирующие цепи. Фильтр верхних частот Привести схему и описать дифференцирующую rl цепь

В дифференцирующей цепи (рис. 11.2, а) постоянная вре­мени должна быть малой по сравнению с длительностью им­пульсов. Эту цепь применяют в тех случаях, когда импульсы сравнительно большой длительности необходимо преобразовать в короткие запускающие импульсы с крутым фронтом. Цепь сохраняет крутой фронт импульса в той же полярности и по су­ществу ведет себя как фильтр верхних частот, ослабляющий низкочастотные и пропускающий высокочастотные составляю­щие импульса.

При подаче напряжения на конденсатор протекающий через него ток пропорционален производной приложенного к конден­сатору напряжения е с:

(11.4)

При малой постоянной времени сопротивление резистора ока­зывается значительно больше реактивного сопротивления кон­денсатора. Поэтому выходное напряжение, равное падению на­пряжения на резисторе, приближенно выражается формулой

(11.5)

На рис. 11.2,6 и в показаны соответственно формы импуль­са на входе и выходе дифференцирующей цепи. От начального момента действия импульса и в течение всей его длительности к входу схемы прикладывается постоянное напряжение. Если при подаче входного импульса конденсатор Ci не был заряжен, то в первый момент через конденсатор, а также через рези стор R1 будет протекать большой ток. Таким образом, на рези­сторе сразу же появляется большое падение напряжения, бла­годаря чему на выходе очень быстро нарастает фронт импульса (рис. 11.2, в). По мере заряда конденсатора протекающий че­рез него ток уменьшается со скоростью, зависящей от постоян­ной времени цепи. При малой постоянной времени конденса­тор быстро заряжается и ток перестает протекать по цепи. Та­ким образом, когда конденсатор полностью заряжен, напряже­ние на резисторе R 1 спадает до нулевого уровня. В момент окончания действия импульса входное напряжение уменьшает­ся до нуля, и конденсатор начинает разряжаться. Ток разряда конденсатора имеет противоположное но сравнению с током за­ряда направление, следовательно, направление тока через рези­стор также противоположно току заряда. Поэтому на выходе теперь появится отрицательный всплеск напряжения.

Рис. 11.2. Дифференцирующая цепь (а) и форма импульса на входе (б) и выходе (в) цепи.

На практике на вход дифференцирующей цепи обычно по­даются импульсы. Если же на вход дифференцирующей цепи подать синусоидальные колебания, то их форма не изменится, но произойдут сдвиг фазы выходного колебания и уменьшение амплитуды этих колебаний на величины, зависящие от частоты входного сигнала. Другой тип дифференцирующей схемы мож­но получить, если C 1 заменить резистором, а R 1 - индуктив­ностью. В такой цепи фактором, определяющим качество диф­ференцирования, является также постоянная времени. Как и в интегрирующей цепи, омическое сопротивление катушки индук­тивности ухудшает характеристики схемы. Поэтому такую цепь применяют довольно редко.

Постоянная времени цепи RC

Электрическая цепь RC

Рассмотрим ток в электрической цепи, состоящей из конденсатора ёмкостью C и резистора сопротивлением R, соединённых параллельно.
Значение тока заряда или разряда конденсатора определится выражением I = C(dU/dt) , а значение тока в резисторе, согласно закону Ома, составит U/R , где U - напряжение заряда конденсатора.

Из рисунка видно, что электрический ток I в элементах C и R цепи будет иметь одинаковое значение и противоположное направление, согласно закону Кирхгофа. Следовательно, его можно выразить следующим образом:

Решаем дифференциальное уравнение C(dU/dt)= -U/R

Интегрируем:

Из таблицы интегралов здесь используем преобразование

Получаем общий интеграл уравнения: ln|U| = - t/RC + Const .
Выразим из него напряжение U потенцированием: U = e -t/RC * e Const .
Решение примет вид:

U = e -t/RC * Const.

Здесь Const - константа, величина, определяемая начальными условиями.

Следовательно, напряжение U заряда или разряда конденсатора будет меняться во времени по экспоненциальному закону e -t/RC .

Экспонента - функция exp(x) = e x
e – Математическая константа, приблизительно равная 2.718281828...

Постоянная времени τ

Если конденсатор емкостью C последовательно с резистором сопротивлением R подключить к источнику постоянного напряжения U , в цепи пойдёт ток, который за любое время t зарядит конденсатор до значения U C и определится выражением:

Тогда напряжение U C на выводах конденсатора будет увеличиваться от нуля до значения U по экспоненте:

U C = U(1 - e -t/RC )

При t = RC , напряжение на конденсаторе составит U C = U(1 - e -1 ) = U(1 - 1/e) .
Время, численно равное произведению RC , называется постоянной времени цепи RC и обозначается греческой буквой τ .

Постоянная времени τ = RC

За время τ конденсатор зарядится до (1 - 1/e )*100% ≈ 63,2% значения U .
За время 3τ напряжение составит (1 - 1/e 3)*100% ≈ 95% значения U .
За время 5τ напряжение возрастёт до (1 - 1/e 5)*100% ≈ 99% значения U .

Если к конденсатору емкостью C , заряженному до напряжения U , параллельно подключить резистор сопротивлением R , тогда в цепи пойдёт ток разряда конденсатора.

Напряжение на конденсаторе при разряде будет составлять U C = Ue -t/τ = U/e t/τ .

За время τ напряжение на конденсаторе уменьшится до значения U/e , что составит 1/e *100% ≈ 36.8% значения U .
За время 3τ конденсатор разрядится до (1/e 3)*100% ≈ 5% от значения U .
За время 5τ до (1/e 5)*100% ≈ 1% значения U .

Параметр τ широко применяется при расчётах RC -фильтров различных электронных цепей и узлов.

Связь мгновенных значений напряжений и токов на элементах

Электрической цепи

Для последовательной цепи, содержащей линейные резистор R, катушку индуктивности L и конденсатор С, при ее подключении к источнику с напряжением u (см. рис. 1) можно записать

где х – искомая функция времени (напряжение, ток, потокосцепление и т.п.); - известное возмущающее воздействие (напряжение и (или) ток источника электрической энергии); - к-й постоянный коэффициент, определяемый параметрами цепи.

Порядок данного уравнения равен числу независимых накопителей энергии в цепи, под которыми понимаются катушки индуктивности и конденсаторы в упрощенной схеме, получаемой из исходной путем объединения индуктивностей и соответственно емкостей элементов, соединения между которыми являются последовательными или параллельными.

В общем случае порядок дифференциального уравнения определяется соотношением

, (3)

где и - соответственно число катушек индуктивности и конденсаторов после указанного упрощения исходной схемы; - число узлов, в которых сходятся только ветви, содержащие катушки индуктивности (в соответствии с первым законом Кирхгофа ток через любую катушку индуктивности в этом случае определяется токами через остальные катушки); - число контуров схемы, ветви которых содержат только конденсаторы (в соответствии со вторым законом Кирхгофа напряжение на любом из конденсаторов в этом случае определяется напряжениями на других).

Наличие индуктивных связей на порядок дифференциального уравнения не влияет.

Как известно из математики, общее решение уравнения (2) представляет собой сумму частного решения исходного неоднородного уравнения и общего решения однородного уравнения, получаемого из исходного путем приравнивания его левой части к нулю. Поскольку с математической стороны не накладывается каких-либо ограничений на выбор частного решения (2), применительно к электротехнике в качестве последнего удобно принять решение , соответствующее искомой переменной х в установившемся послекоммутационном режиме (теоретически для ).

Частное решение уравнения (2) определяется видом функции , стоящей в его правой части, и поэтому называется принужденной составляющей. Для цепей с заданными постоянными или периодическими напряжениями (токами) источников принужденная составляющая определяется путем расчета стационарного режима работы схемы после коммутации любым из рассмотренных ранее методов расчета линейных электрических цепей.

Вторая составляющая общего решения х уравнения (2) – решение (2) с нулевой правой частью – соответствует режиму, когда внешние (принуждающие) силы (источники энергии) на цепь непосредственно не воздействуют. Влияние источников проявляется здесь через энергию, запасенную в полях катушек индуктивности и конденсаторов. Данный режим работы схемы называется свободным, а переменная - свободной составляющей.

В соответствии с вышесказанным, . общее решение уравнения (2) имеет вид

(4)

Соотношение (4) показывает, что при классическом методе расчета послекоммутационный процесс рассматривается как наложение друг на друга двух режимов – принужденного, наступающего как бы сразу после коммутации, и свободного, имеющего место только в течение переходного процесса.

Необходимо подчеркнуть, что, поскольку принцип наложения справедлив только для линейных систем, метод решения, основанный на указанном разложении искомой переменной х, справедлив только для линейных цепей.

Начальные условия. Законы коммутации

В соответствии с определением свободной составляющей в ее выражении имеют место постоянные интегрирования , число которых равно порядку дифференциального уравнения. Постоянные интегрирования находятся из начальных условий, которые принято делить на независимые и зависимые. К независимым начальным условиям относятся потокосцепление (ток) для катушки индуктивности и заряд (напряжение) на конденсаторе в момент времени (момент коммутации). Независимые начальные условия определяются на основании законов коммутации (см. табл. 2).

Таблица 2. Законы коммутации

See more at: http://www.toehelp.ru/theory/toe/lecture24/lecture24.html#sthash.jqyFZ18C.dpuf

Интегрирующая цепь RC

Рассмотрим электрическую цепь из резистора сопротивлением R и конденсатора ёмкостью C , представленную на рисунке.

Элементы R и C соединены последовательно, значит, ток в их цепи можно выразить, исходя из производной напряжения заряда конденсатора dQ/dt = C(dU/dt) и закона Ома U/R . Напряжение на выводах резистора обозначим U R .
Тогда будет иметь место равенство:

Проинтегрируем последнее выражение . Интеграл левой части уравнения будет равен U out + Const . Перенесём постоянную составляющую Const в правую часть с тем же знаком.
В правой части постоянную времени RC вынесем за знак интеграла:

В итоге получилось, что выходное напряжение U out прямо-пропорционально интегралу напряжения на выводах резистора, следовательно, и входному току I in .
Постоянная составляющая Const не зависит от номиналов элементов цепи.

Чтобы обеспечить прямую пропорциональную зависимость выходного напряжения U out от интеграла входного U in , необходима пропорциональность входного напряжения от входного тока.

Нелинейное соотношение U in /I in во входной цепи вызвано тем, что заряд и разряд конденсатора происходит по экспоненте e -t/τ , которая наиболее нелинейна при t/τ ≥ 1, то есть, когда значение t соизмеримо или больше τ .
Здесь t - время заряда или разряда конденсатора в пределах периода.
τ = RC - постоянная времени - произведение величин R и C .
Если взять номиналы RC цепи, когда τ будет значительно больше t , тогда начальный участок экспоненты для короткого периода (относительно τ ) может быть достаточно линейным, что обеспечит необходимую пропорциональность между входным напряжением и током.

Для простой цепи RC постоянную времени обычно берут на 1-2 порядка больше периода переменного входного сигнала, тогда основная и значительная часть входного напряжения будет падать на выводах резистора, обеспечивая в достаточной степени линейную зависимость U in /I in ≈ R .
В таком случае выходное напряжение U out будет с допустимой погрешностью пропорционально интегралу входного U in .
Чем больше величины номиналов RC , тем меньше переменная составляющая на выходе, тем более точной будет кривая функции.

В большинстве случаев, переменная составляющая интеграла не требуется при использовании таких цепей, нужна только постоянная Const , тогда номиналы RC можно выбирать по возможности большими, но с учётом входного сопротивления следующего каскада.

В качестве примера, сигнал с генератора - положительный меандр 1V периодом 2 mS подадим на вход простой интегрирующей цепи RC с номиналами:
R = 10 kOhm, С = 1 uF. Тогда τ = RC = 10 mS.

В данном случае постоянная времени лишь в пять раз больше времени периода, но визуально интегрирование прослеживается в достаточной степени точно.
График показывает, что выходное напряжение на уровне постоянной составляющей 0.5в будет треугольной формы, потому как участки, не меняющиеся во времени, для интеграла будут константой (обозначим её a ), а интеграл константы будет линейной функцией. ∫adx = ax + Const . Величина константы a определит тангенса угла наклона линейной функции.

Проинтегрируем синусоиду, получим косинус с обратным знаком ∫sinxdx = -cosx + Const .
В данном случае постоянная составляющая Const = 0.

Если подать на вход сигнал треугольной формы, на выходе будет синусоидальное напряжение.
Интеграл линейного участка функции - парабола. В простейшем варианте ∫xdx = x 2 /2 + Const .
Знак множителя определит направление параболы.

Недостаток простейшей цепочки в том, что переменная составляющая на выходе получается очень маленькой относительно входного напряжения.

Рассмотрим в качестве интегратора Операционный Усилитель (ОУ) по схеме, показанной на рисунке.

С учётом бесконечно большого сопротивления ОУ и правила Кирхгофа здесь будет справедливо равенство:

I in = I R = U in /R = - I C .

Напряжение на входах идеального ОУ здесь равно нулю, тогда на выводах конденсатора U C = U out = - U in .
Следовательно, U out определится, исходя из тока общей цепи.

При номиналах элементов RC , когда τ = 1 Sec, выходное переменное напряжение будет равно по значению интегралу входного. Но, противоположно по знаку. Идеальный интегратор-инвертор при идеальных элементах схемы.

Дифференцирующая цепь RC

Рассмотрим дифференциатор с применением Операционного Усилителя.

Идеальный ОУ здесь обеспечит равенство токов I R = - I C по правилу Кирхгофа.
Напряжение на входах ОУ равно нулю, следовательно, выходное напряжение U out = U R = - U in = - U C .
Исходя из производной заряда конденсатора, закона Ома и равенства значений токов в конденсаторе и резисторе, запишем выражение:

U out = RI R = - RI C = - RC(dU C /dt) = - RC(dU in /dt)

Отсюда видим, что выходное напряжение U out пропорционально производной заряда конденсатора dU in /dt , как скорости изменения входного напряжения.

При величине постоянной времени RC , равной единице, выходное напряжение будет равно по значению производной входного напряжения, но противоположно по знаку. Следовательно, рассмотренная схема дифференцирует и инвертирует входной сигнал.

Производная константы равна нулю, поэтому постоянная составляющая при дифференцировании на выходе будет отсутствовать.

В качестве примера, подадим на вход дифференциатора сигнал треугольной формы. На выходе получим прямоугольный сигнал.
Производная линейного участка функции будет константой, знак и величина которой определится наклоном линейной функции.

Для простейшей дифференцирующей цепочки RC из двух элементов используем пропорциональную зависимость выходного напряжения от производной напряжения на выводах конденсатора.

U out = RI R = RI C = RC(dU C /dt)

Если взять номиналы элементов RC, чтобы постоянная времени была на 1-2 порядка меньше длины периода, тогда отношение приращения входного напряжения к приращению времени в пределах периода может определять скорость изменения входного напряжения в определённой степени точно. В идеале это приращение должно стремиться к нулю. В таком случае основная часть входного напряжения будет падать на выводах конденсатора, а выходное будет составлять незначительную часть от входного, поэтому для вычислений производной такие схемы практически не используются.

Наиболее часто дифференцирующие и интегрирующие цепи RC применяют для изменения длины импульса в логических и цифровых устройствах.
В таких случаях номиналы RC рассчитывают по экспоненте e -t/RC исходя из длины импульса в периоде и требуемых изменений.
Например, ниже на рисунке показано, что длина импульса T i на выходе интегрирующей цепочки увеличится на время 3τ . Это время разряда конденсатора до 5% амплитудного значения.

На выходе дифференцирующей цепи амплитудное напряжение после подачи импульса появляется мгновенно, так как на выводах разряженного конденсатора оно равно нулю.
Далее следует процесс заряда и напряжение на выводах резистора убывает. За время 3τ оно уменьшится до 5% амплитудного значения.

Здесь 5% - величина показательная. В практических расчётах этот порог определится входными параметрами применяемых логических элементов.

Лабораторная работа

«Дифференцирующие и интегрирующие цепи»

Полянчев С., Коротков Р.

Цели работы: ознакомление с принципом действия, основными свойствами и параметрами дифференцирующих и интегрирующих цепей, установление условия дифференцирования и интегрирования, определение постоянной времени.

Теоретическая часть.

В радиоэлектронике и экспериментальной физике возникает необходимость преобразования формы сигналов. Часто это может быть выполнено путём их дифференцирования или интегрирования. Например, при формировании запускающих импульсов для управления работой ряда устройств импульсной техники (дифференцирующие цепи) или при выделении полезного сигнала на фоне шумов (интегрирующие цепи).

Анализ простейших цепей для дифференцирования и интегрирования сигналов

Дифференцирующей называется радиотехническая цепь, с выхода которой может сниматься сигал, пропорциональный производной от входного сигнала U вых (t) ~ dU вх (t)/dt(1)

Аналогично, для интегрирующей цепи: U вых (t) ~ òU вх (t)dt(2)

Поскольку дифференцирование и интегрирование являются линейными математическими операциями, указанные выше преобразования сигналов могут осуществляться линейными цепями, т.е. схемами, состоящими из постоянных индуктивностей, емкостей и сопротивлений.

Рассмотрим цепь с последовательно соединёнными R, C и L, на вход которой подаётся сигал U вх (t) (рис.1).

Выходной сигал в такой цепи можно снимать с любого её элемента. При этом:

U R +U C +U L = Ri(t) + 1/c òi(t)dt + L di(t)/dt = U вх (t). (3)

Очевидно, что поскольку значения U R , U C и U L определяются параметрами R, C и L, то подбором последних могут быть осуществлены ситуации, когдаU R , U C и U L существенно неодинаковы. Рассмотрим для случая цепи, в которой U L » 0 (RC – цепь).

А) U C >> U R , тогда из (3) имеем:

i(t) = C dU вх (t)/dt (4)

Отсюда следует, что напряжения на сопротивлении пропорционально производной от входного сигнала:

U R (t) = RCdU вх (t)/dt = t 0 dU вх (t)/dt. (5)

Таким образом, мы приходим к схеме дифференцирующего четырёхполюсника, показанной на рис.2, в которой выходной сигал снимается с сопротивления R.

Б) U R >> U C . В этом случае из (3) получаем: i(t) = U вх (t)/R(6) и напряжение на емкости равно:

U C = 1/RCòU вх (t)dt = 1/t 0 òU вх (t)dt. (7)

Видно, что для осуществления операции интегрирования необходимо использовать RC-цепочку в соответствии со схемой на рис.3.

Для получения как эффекта дифференцирования, так и интегрирования, сигнал надо снимать с элемента, на котором наименьшее падение напряжения. Величина U вых (t) определяется значением постоянной времени t 0 , равной RC для RC-цепочки.

Очевидно, что эффекты дифференцирования и интегрирования в общем случае отвечают, соответственно, относительно малым и большим t 0 .

Условия дифференцирования и интегрирования

Уточним теперь, как связаны условия А и Б, а также использованные выше понятия «малого» и «большого» t 0 с параметрами R, C, L и характеристиками сигнала.

Пусть входной сигнал U вх (t) обладает спектральной плотностью

, т.е. (12)

Тогда при точном дифференцировании для выходного сигнала получим:

, (13)

откуда следует, что коэффициент передачи идеального дифференцирующего четырёхполюсника (

) равен: (14)

Рассмотренная нами дифференцирующая цепь (рис.2) имеет коэффициент передачи:

(15)

Из сравнения (14) и (15) видно, что рассмотренная нами цепь будет тем ближе к идеальной, чем лучше выполняется условие

wt 0 << 1 (16)

Причём, для всех частот в спектре входного сигнала. Для упрощения оценки в неравенство (16) обычно подставляют максимальную частоту в спектре входного сигнала w m t 0 << 1.

Итак, чтобы продифференцировать некоторый сигнал, необходимо найти его спектральный состав и собрать RC-цепь с постоянной времени t 0 << w m -1 , где w m – максимальная частота в спектре входного сигнала.

Отметим, что для импульсных сигналов верхнюю границу полосы частот можно оценить по формуле (2) w m = 2p/t u , где t u – длительность импульса. Т.о., в этом случае условие дифференцирования запишется в виде

t 0 << t u (17)

Совершенно аналогично можно показать, что для удовлетворительного интегрирования требуется выполнение условия

wt 0 >> 1 (18)

также для всех частот спектра входного сигнала, в том числе и для самой нижней. Аналогично для интегрирования импульсов длительностью t u условие интегрирования запишется в виде

t 0 << t u (19)

Из неравенств (16), (18) следует, что при заданной цепи дифференцирование осуществляется тем точнее, чем ниже частоты, на которых концентрируется энергия входного сигнала, а интегрирование – чем выше эти частоты. Чем точнее дифференцирование или интегрирование, тем меньше величина выходного сигнала.


Прохождение прямоугольных импульсов через RC -цепи

В качестве примера, иллюстрирующего дифференцирование и интегрирование сигналов, рассмотрим отклик RC-цепей, показанных на рис.2 и 3, на прямоугольный импульс. Возьмём цепь, на выходе которой стоит сопротивление (рис.2), найдём осциллограмму выходного напряжения, т.е. вид U R (t). Пусть в момент времени t = 0 на входе возникает скачок напряжения U 0 (рис.4).

В этом случае для 0 < t < t u можно записать уравнение цепи в виде:

U 0 = 1/Còi(t)dt + U R (t). (17)

После дифференцирования получим

dU R /dt + U R /t 0 = 0. (18)

Поскольку ёмкость С не может зарядиться мгновенно, то для t = 0, U R = U 0 всё входное напряжение оказывается приложенным к сопротивлению. С учётом этого начального условия решение уравнения (18) запишется в виде:

. (19)

Экспоненциальный спад выходного напряжения описывает процесс зарядки ёмкости через сопротивление R и соответствующее перераспределение напряжения между R и C. При этом постоянная времени t 0 характеризует скорость зарядки ёмкости и может быть интерпретирована как время, за которое напряжение U R уменьшится в е раз.

Для t 0 << t u экспоненциальная зависимость становится резче, в результате на выходе наблюдаем короткие импульсы в момент начала и окончания входного воздействия, являющиеся удовлетворительной аппроксимацией производной от входного сигнала (рис.4).

Если выходное напряжение снимается с конденсатора, то для 0 < t < t u получим:

(21)

и для t >= t u

. (22)

Если цепь является интегрирующей, то выполняется неравенство t 0 >> t u , что позволяет использовать разложение экспоненты в ряд Тейлора.

Рассмотрим электрическую цепь из резистора сопротивлением R и конденсатора ёмкостью C , представленную на рисунке.

Элементы R и C соединены последовательно, значит, ток в их цепи можно выразить, исходя из производной напряжения заряда конденсатора dQ/dt = C(dU/dt) и закона Ома U/R . Напряжение на выводах резистора обозначим U R .
Тогда будет иметь место равенство:

Проинтегрируем последнее выражение . Интеграл левой части уравнения будет равен U out + Const . Перенесём постоянную составляющую Const в правую часть с тем же знаком.
В правой части постоянную времени RC вынесем за знак интеграла:

В итоге получилось, что выходное напряжение U out прямо-пропорционально интегралу напряжения на выводах резистора, следовательно, и входному току I in .
Постоянная составляющая Const не зависит от номиналов элементов цепи.

Чтобы обеспечить прямую пропорциональную зависимость выходного напряжения U out от интеграла входного U in , необходима пропорциональность входного напряжения от входного тока.

Нелинейное соотношение U in /I in во входной цепи вызвано тем, что заряд и разряд конденсатора происходит по экспоненте e -t/τ , которая наиболее нелинейна при t/τ ≥ 1, то есть, когда значение t соизмеримо или больше τ .
Здесь t - время заряда или разряда конденсатора в пределах периода.
τ = RC - постоянная времени - произведение величин R и C .
Если взять номиналы RC цепи, когда τ будет значительно больше t , тогда начальный участок экспоненты для короткого периода (относительно τ ) может быть достаточно линейным, что обеспечит необходимую пропорциональность между входным напряжением и током.

Для простой цепи RC постоянную времени обычно берут на 1-2 порядка больше периода переменного входного сигнала, тогда основная и значительная часть входного напряжения будет падать на выводах резистора, обеспечивая в достаточной степени линейную зависимость U in /I in ≈ R .
В таком случае выходное напряжение U out будет с допустимой погрешностью пропорционально интегралу входного U in .
Чем больше величины номиналов RC , тем меньше переменная составляющая на выходе, тем более точной будет кривая функции.

В большинстве случаев, переменная составляющая интеграла не требуется при использовании таких цепей, нужна только постоянная Const , тогда номиналы RC можно выбирать по возможности большими, но с учётом входного сопротивления следующего каскада.

В качестве примера, сигнал с генератора - положительный меандр 1V периодом 2 mS подадим на вход простой интегрирующей цепи RC с номиналами:
R = 10 kOhm, С = 1 uF. Тогда τ = RC = 10 mS.

В данном случае постоянная времени лишь в пять раз больше времени периода, но визуально интегрирование прослеживается в достаточной степени точно.
График показывает, что выходное напряжение на уровне постоянной составляющей 0.5в будет треугольной формы, потому как участки, не меняющиеся во времени, для интеграла будут константой (обозначим её a ), а интеграл константы будет линейной функцией. ∫adx = ax + Const . Величина константы a определит тангенса угла наклона линейной функции.

Проинтегрируем синусоиду, получим косинус с обратным знаком ∫sinxdx = -cosx + Const .
В данном случае постоянная составляющая Const = 0.

Если подать на вход сигнал треугольной формы, на выходе будет синусоидальное напряжение.
Интеграл линейного участка функции - парабола. В простейшем варианте ∫xdx = x 2 /2 + Const .
Знак множителя определит направление параболы.

Недостаток простейшей цепочки в том, что переменная составляющая на выходе получается очень маленькой относительно входного напряжения.

Рассмотрим в качестве интегратора Операционный Усилитель (ОУ) по схеме, показанной на рисунке.

С учётом бесконечно большого сопротивления ОУ и правила Кирхгофа здесь будет справедливо равенство:

I in = I R = U in /R = - I C .

Напряжение на входах идеального ОУ здесь равно нулю, тогда на выводах конденсатора U C = U out = - U in .
Следовательно, U out определится, исходя из тока общей цепи.

При номиналах элементов RC , когда τ = 1 Sec, выходное переменное напряжение будет равно по значению интегралу входного. Но, противоположно по знаку. Идеальный интегратор-инвертор при идеальных элементах схемы.

Дифференцирующая цепь RC

Рассмотрим дифференциатор с применением Операционного Усилителя.

Идеальный ОУ здесь обеспечит равенство токов I R = - I C по правилу Кирхгофа.
Напряжение на входах ОУ равно нулю, следовательно, выходное напряжение U out = U R = - U in = - U C .
Исходя из производной заряда конденсатора, закона Ома и равенства значений токов в конденсаторе и резисторе, запишем выражение:

U out = RI R = - RI C = - RC(dU C /dt) = - RC(dU in /dt)

Отсюда видим, что выходное напряжение U out пропорционально производной заряда конденсатора dU in /dt , как скорости изменения входного напряжения.

При величине постоянной времени RC , равной единице, выходное напряжение будет равно по значению производной входного напряжения, но противоположно по знаку. Следовательно, рассмотренная схема дифференцирует и инвертирует входной сигнал.

Производная константы равна нулю, поэтому постоянная составляющая при дифференцировании на выходе будет отсутствовать.

В качестве примера, подадим на вход дифференциатора сигнал треугольной формы. На выходе получим прямоугольный сигнал.
Производная линейного участка функции будет константой, знак и величина которой определится наклоном линейной функции.

Для простейшей дифференцирующей цепочки RC из двух элементов используем пропорциональную зависимость выходного напряжения от производной напряжения на выводах конденсатора.

U out = RI R = RI C = RC(dU C /dt)

Если взять номиналы элементов RC, чтобы постоянная времени была на 1-2 порядка меньше длины периода, тогда отношение приращения входного напряжения к приращению времени в пределах периода может определять скорость изменения входного напряжения в определённой степени точно. В идеале это приращение должно стремиться к нулю. В таком случае основная часть входного напряжения будет падать на выводах конденсатора, а выходное будет составлять незначительную часть от входного, поэтому для вычислений производной такие схемы практически не используются.

Наиболее часто дифференцирующие и интегрирующие цепи RC применяют для изменения длины импульса в логических и цифровых устройствах.
В таких случаях номиналы RC рассчитывают по экспоненте e -t/ RC исходя из длины импульса в периоде и требуемых изменений.
Например, ниже на рисунке показано, что длина импульса T i на выходе интегрирующей цепочки увеличится на время 3τ . Это время разряда конденсатора до 5% амплитудного значения.

На выходе дифференцирующей цепи амплитудное напряжение после подачи импульса появляется мгновенно, так как на выводах разряженного конденсатора оно равно нулю.
Далее следует процесс заряда и напряжение на выводах резистора убывает. За время 3τ оно уменьшится до 5% амплитудного значения.

Здесь 5% - величина показательная. В практических расчётах этот порог определится входными параметрами применяемых логических элементов.

Замечания и предложения принимаются и приветствуются!

Дифференцирующие цепи – это цепи, в которых напряжение на выходе пропорционально производной входного напряжения. Эти цепи решают две основные задачи преобразования сигналов: получение импульсов очень малой длительности (укорочение импульсов), которые используются для запуска управляемых преобразователей электрической энергии, триггеров, одновибраторов и других устройств; выполнение математической операции дифференцирования (получение производной по времени) сложных функций, заданных в виде электрических сигналов, что часто встречается в вычислительной технике, аппаратуре авторегулирования и др.

Схема емкостной дифференцирующей цепи показана на рис. 1. Входное напряжение прикладывается ко всей цепи, а выходное снимается с резистора R. Ток, протекающий через конденсатор, связан с напряжением на нем известным соотношением i C = C (dU C /dt). Учитывая, что этот же ток протекает через резистор R, запишем выходное напряжение

Если U ВЫХ << U ВХ, что справедливо, когда падение напряжения на резисторе много меньше напряжения U С, то уравнение можно записать в приближенном виде U ВЫХ . Соотношение U ВЫХ << U ВХ » U C выполняется, если величина сопротивления R много меньше величины реактивного сопротивления конденсатора, т.е. R << 1/wC (для сигнала синусоидальной формы) и R << 1/w в C, где w в – частоты высшей гармоники импульсного сигнала.

Величина t = RC называется постоянной времени цепи. Из курса электричества известно, что конденсатор заряжается (разряжается) через резистор по экспоненциальному закону. Через промежуток времени t = t = RC конденсатор заряжается на 63 % от поданного входного напряжения, через t = 2,3 t - до 90 % от U ВХ и через 4,6 t - до 99 % от U ВХ.

Пусть на вход дифференцирующей цепи (рис. 1) подан прямоугольный импульс длительностью t И (рис. 2, а). Пусть t И = 10 t. Тогда выходной сигнал будет иметь форму, показанную на рис. 2, г. Действительно, в начальный момент времени напряжение на конденсаторе равно нулю, и мгновенно оно измениться не может. Поэтому все входное напряжение прикладывается к резистору. В дальнейшем конденсатор заряжается экспоненциально убывающим током. При этом напряжение на конденсаторе увеличивается, а напряжение на резисторе уменьшается так, что в каждый момент времени выполняется равенство U BX = U C + U ВЫХ. Через промежуток времени t ³ 3 t конденсатор заряжается практически до входного напряжения, зарядный ток прекратится и выходное напряжение станет равным нулю.

Когда входной импульс закончится (U BX = 0), конденсатор начнет разряжаться через резистор R и входную цепь. Направление тока разряда противоположно направлению зарядного тока, поэтому полярность напряжения на резисторе меняется. По мере разряда конденсатора напряжение на нем уменьшается, а вместе с ним уменьшается напряжение на резисторе R. В результате получаются укороченные импульсы (при t И > 4¸5 RC). Изменение формы импульса при других соотношениях длительности импульса и постоянной времени показано на рис. 2,б,в.

Интегрирующая цепь – это цепь, у которой выходное напряжение пропорционально интегралу по времени от входного напряжения. Отличаются интегрирующие цепи (рис. 3) от дифференцирующих (рис. 1) тем, что выходное напряжение снимается с конденсатора. Когда напряжение на конденсаторе С незначительно по сравнению с напряжением на резисторе R, т.е. U ВЫХ = U C << U R , то ток i в цепи пропорционален входному напряжению, которое прикладывается ко всей цепи. Поэтому

Дополнительно